

ICCRAM

UNIVERSIDAD DE BURGOS

International Research Center in Critical RAw Materials for Advanced Industrial Technologies

ICCRAM Scientific Presentation

ICCRAM — UNIVERSIDAD DE BURGOS

ABOUT ICCRAM	ICCRAM-EST GROUP	MODELLING GROUP	PROELECTRO GROUP
The Main Objectives of ICCRAM (page 3)	Environment Line Soil Health. Environment Restoration and agriculture -	Multiscale Materials Modelling (page 30)	Electrochemical Processes (page 35)
The Main Strengths of ICCRAM (page 4)	Projects & Team (page 9) Sustainability Line	In-Silico Targets and Supercomputing of SSbD (page 31)	Capabilities of Proelectro (page 36)
The Research Lines of ICCRAM (page 5)	Sustainability - Circular Economy, SSbD and Toxicology Interaction - Projects & Team (page 16)	In-silico Design. Testing Methods	Projects & Team (page 37)
ICCRAM Collaboration (page 6)	Biomedicine and Toxicology Lines	and Tools (page 32) Projects & Team	
ICCRAM Main Features (page 7)	Cellular Toxicity and Microbiology - Projects & Team (page 22)	(page 34)	
Page 3-7	Page 8-29	Page 30-34	Page 35-38

ABOUT

International Research Center in Critical RAw Materials for Advanced Industrial Technologies

This center, **inaugurated in 2014** and affiliated with the University of Burgos, **has the following objectives**:

THE THREE MAIN OBJECTIVES OF ICCRAM

OBJECTIVE 1

Position the University of Burgos as a European leader in the areas of biotechnology research, sustainability, toxicology, electrochemistry, and computer simulation.

OBJECTIVE 2

Collaborate with other University
Departments to achieve greater
success in international projects.

OBJECTIVE 3

Promote innovation in society by driving **industrial**, **institutional**, and **social** engagement.

ABOUT

THE FOUR MAIN STRENGTHS OF ICCRAM

STRENGTH 1

ICCRAM is located inside
the R+D+i / CIBA / Scientific
Technological Park of the University
of Burgos.

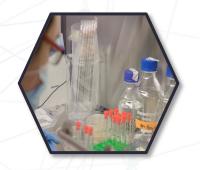
STRENGTH 2

ICCRAM is a specialist in forefront technologies in the **fields of**:

Biomedicine, Environment, Soil Health, Sustainability, Circular Economy, Materials, Energy Storage and SSbD.

STRENGTH 3

ICCRAM promotes **different activities**to motivate young people to be
future researchers.


STRENGTH 4

ICCRAM has a interdisciplinary and multidisciplinary team of over 40 people specialized in the different research fields and project management.

THE SIX MAIN RESEARCH LINES OF ICCRAM

Research Line 2

Sustainability | Circular economy

Research Line 5

Multi-scale materials modelling

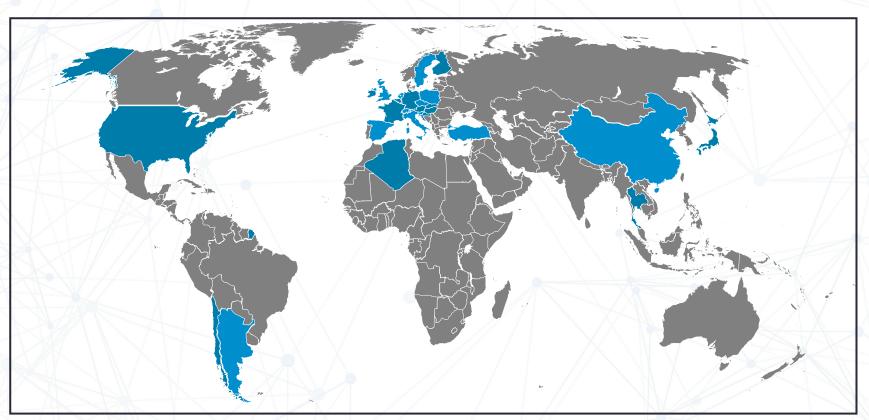
Research Line 1

Environment | Soil Health

Research Lines 3, 4

Toxicology and Biomedicine

Research Line 6

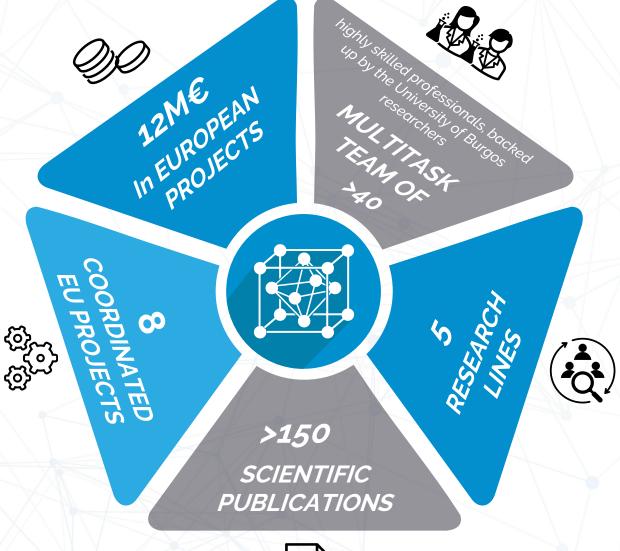

Electrochemistry and Energy storage

NATIONAL, EUROPEAN AND INTERNATIONAL COLLABORATION

University / Research Centers / non-profit associations / private institutions

Collaboration in Spain

Collaboration in Europe



ABOUT ICCRAM

International Research Center in Critical RAw Materials for Advanced Industrial Technologies

This center, **inaugurated in 2014** and affiliated with the University of Burgos, **has five main features**:

ICCRAM

Environment, Sustainability and Toxicology Research Group (ICCRAM-EST)

Rocío Barros García Head of Environmental biotechnology

ICCRAMI Environmental biotechonolgy

ENVIRONMENT

and Soil Health

01. BIOREMEDIATION



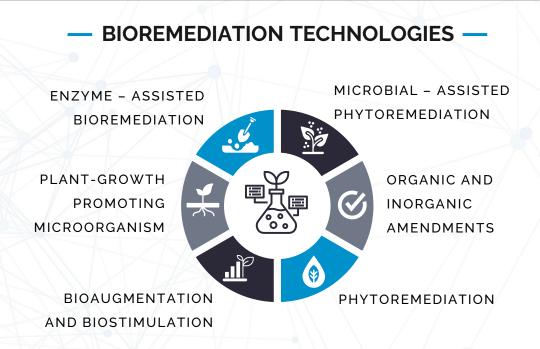
- Design and optimize ad-hoc bioremediation strategies for different targeted pollutants.
- **Scaling-up:** From microcosm experiments to pilot scale.

- Isolation and characterization of microorganisms using advanced techniques. Synthetic microbial consortia to degrade pollutants.
- Enhancing plant growth through bacteria/fungi interaction.

03. NATURE-BASED SOLUTIONS

 Plant based solutions for environmental restoration: wetland systems and phytomanagement.

04. SOIL HEALTH AND SUSTAINABLE AGRICULTURE


- Comprehensive evaluation of soil function and ecosystem services.
- Sustainable agricultural practices to promote soil resilience.

ENVIRONMENT RESTORATION

Soil and Water Matrix: Inorganic and Organic Pollutants

COLLABORATION WITH OTHER GROUPS: UBUCOMP, BBT, ADMIRABLE, LEH

PHYTOMANAGMENT

BIOPILES

— CAPABILITIES —

MOLECULAR BIOLOGY
APPROACHES

-OMICS

STABLE ISOTOPE PROVING

MODELLING AND
MACHINE LEARNING

AGREEMENTS WITH POLLUTED OWNERS

SCALING-UP

Microcosm

Pilot Scale

Field Scale

SOIL HEALTH

and Sustainable Agriculture

— SUSTAINABLE PRACTICES —

"Evaluation of sustainable strategies for crop production and soil protection"

01/ Biostimulants**02/** Biopesticides**03/** Cover Crops**04/** Floral Margins**05/** Plant Growth promoting microorganism

COLLABORATION WITH OTHER UBU GROUPS: GICAP, UBUCOMP and BBT.

Soil Monitoring

- Physicochemical and biochemical properties
- Computerised tomography
- Microbiome
- Biodiversity
- Soil nutrient dynamics

Ecosystem services

- Soil Function.
- Collaboration Agreements / Stakeholders engagement:
 - Farmers Associations
 - Vineyards

RESEARCH AND CAPABILITIES

Digital Tools

- Digital innovation in farming
- Remote servers
- Drones and scanners
- Machine learning models

Plant Phenotyping

- Salinity.
- Drought

SCALING-UP

Growing

Greenhouse

Field Scale

SOIL ANALYSIS

Capabilities

Soil Pollution

- 1. Total and available trace elements: microwave assisted acid digestion in ETHOS ONE (Millestone) and quantification using ICP-OES (Spectro Arcos, AMETEK) or ICP-QQQ (Agilent)
- TPHs microwave assisted extraction in ETHOS-X (Millestone) and quantification using GC-MS/MS
- **3.** Pesticides extraction and quantification (lindane and atrazine).

- 1. Texture and Bulk soil and particle density
- 2. Water retention capacity and SOM content by Lol
- 3. Total Carbon and Nitrogen by combustion (TruSpec LECO)
- 4. Cation exchange capacity (CEC) by ICP-OES (Spectro Genesis, AMETEK)
- Available nutrients: NO3-N, NH4-N, PO4-P by segmented flow analysis (SKALAR)
- 6. Lime content and OM fractionation: PAOM and MAOM.

Soil Sampling

- 1. Geological sampling
- **2. Soil sampling with auge**r for physical chemical analysis
- 3. Rhizosphere sampling for microbiome analysis
- 4. Biodiversity studies.

Soil Biochemistry

- **1. Basal soil respiration** with alkaline trap.
- Microbial biomass (C, N and P) by fumigation-extraction method and DOC or DON quantification by TOC TC/TN (Shimadzu).
- 3. Soil enzymatic profiling (AcPA, bGA, aGA, bXyl, bNAG, SA, AlkPA, LeuAMP) with fluorogenic substrates in microtiter plates.
- **4. Biomarkers**: PLFA with FAMES quantification by GC-MS.
- Physiological profiling CLPP with EcoPlates.

ENVIRONMENT

Projects and Team

— National and European Projects —

Bioremediation Phytoremediation

Bioremediation
Phytoremediation

Phytomanagement
Plant Growth Promoting
Microorganisms

Bioremediation and Phytix

Soil microbiome and biostimulants

Microbial assisted


PHY2SHINE (NATIONAL)

Biocontrol and enzyme based technologies

SUSTAINABILITY

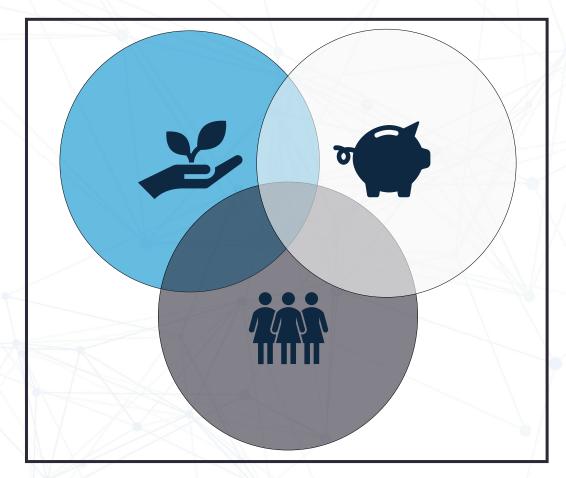
And Circular Economy

WHAT SUSTAINABILITY ASSESSMENT EVALUATES?

Sustainability Assessment evaluating environmental, economic and social aspects of innovative technologies towards **Circular Economy**.

THE THREE MAIN ASPECTS IN CIRCULAR ECONOMY

ASPECTS



ENVIRONMENTAL ASPECTS

SOCIAL ASPECTS

CIRCULAR ECONOMY INFOGRAPHIC

SUSTAINABILITY

And Circular Economy

Life Cycle Assessment (**LCA**)

ISO 14040/44

Prospective LCA

Absolute **Sustainability**

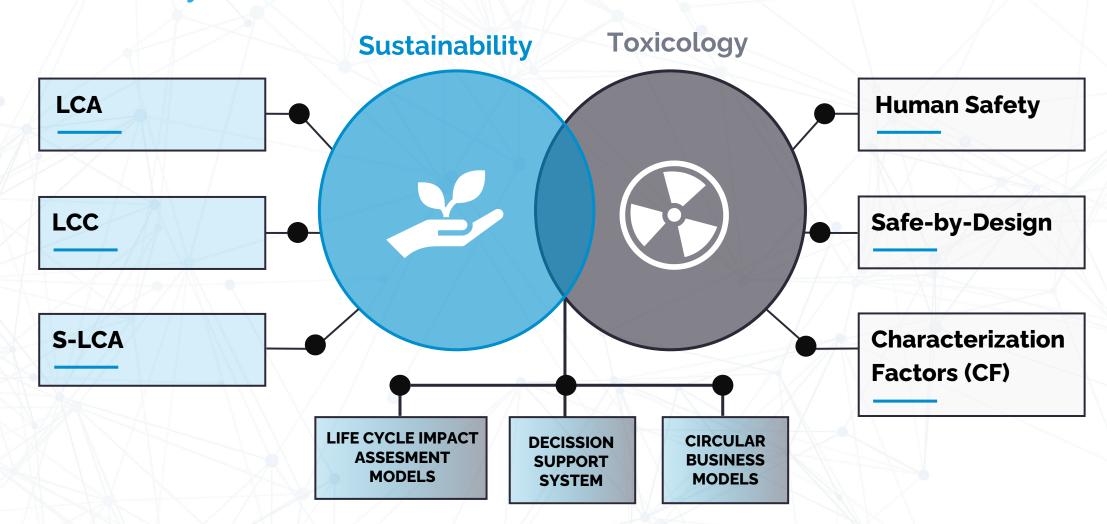
Carbon Footprint

UNEP SETAC guidelines

Co-creation of social indicators

Raw Materials supply chain evaluation

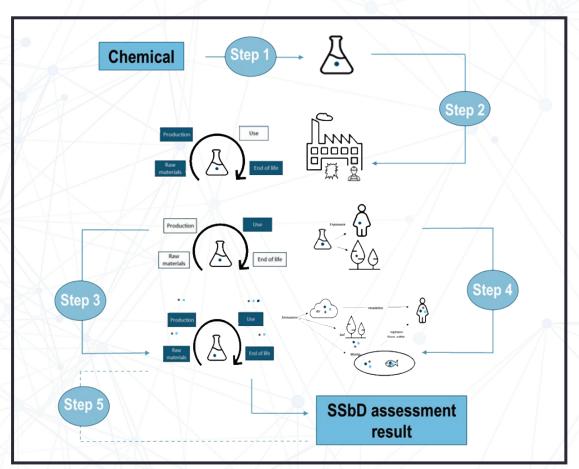
Integrated **Assessments Multi-Criteria Decision** Analysis **Eco-efficiency** matrix



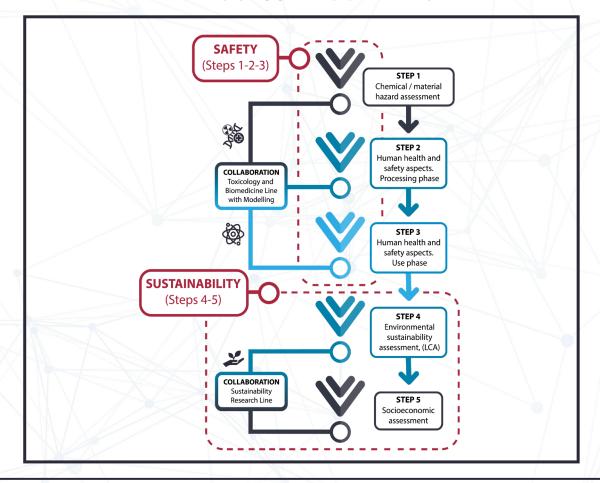
TOXICOLOGY

And Sustainability interaction

Page 19



SSbD


UNIVERSIDAD DE BURGOS

Safety and Sustainability by Design

— CHEMICAL PROCESS INFOGRAPHIC

SAFETY AND SUSTAINABILITY PROCESS INFOGRAPHIC

SUSTAINABILITY

Projects and Team

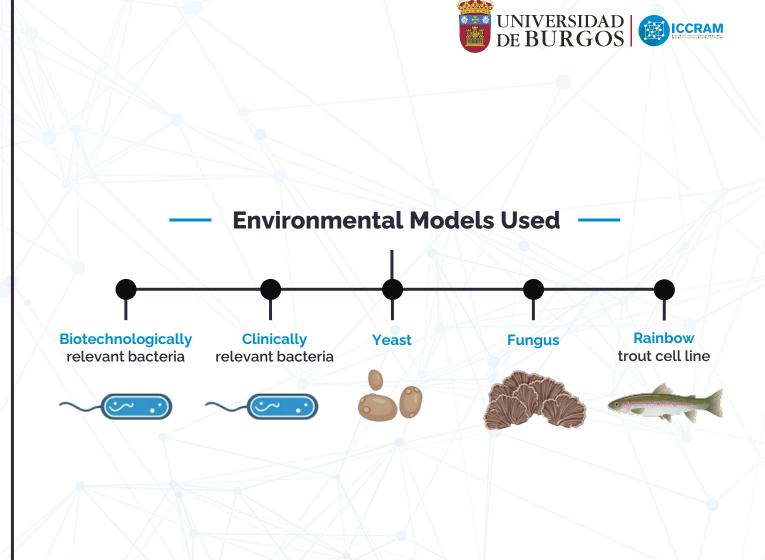
— National and European Projects —

Carbon footprint

CONVERT 2 GREEN

Carlos Rumbo Lorenzo, Head of Toxicology and Microbiology

ICCRAM Toxicology and Microbiology


Environmental and human hazard assessment for novel (nano)materials and chemicals in line with the European Safe and Sustainable by Design (SSbD) Strategy.

TOXICOLOGY

Microbiology

Determination of antimicrobial potential and environmental toxicity of new compounds and nanoparticles from a safety perspective:

- Viability
- Minimal Inhibitory Concentration
- Growth curve assays
- Surface attachment
- Biofilm formation/disassembly assays

TOXICOLOGY

Microbiology (biomedical field)

Antimicrobial properties of new compounds and molecules	Clinical Relevant Strains	
Evaluation of the bacterial growth inhibitory properties	MICs/MBC	Growth Curves
Effects on biofilm formation	Inhibition	Disassembly
Anti-infective properties	In vitro infection	

OBJECTIVES

Evaluate the antimicrobial potential of new compounds and nanoparticles at different levels.

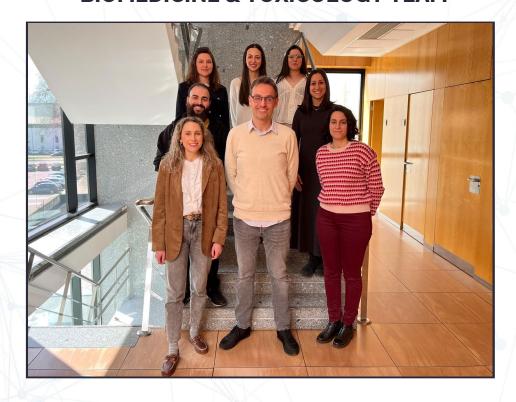
Understanding of antimicrobial mechanisms using molecular biology approaches and -omics.

Analyse the safety of promising antimicrobial compounds/nanoparticles for human health

TOXICOLOGY AND BIOMEDICINE

Projects and Team

National and European Projects



BIOMEDICINE & TOXICOLOGY TEAM

Laura Gómez Cuadrado, Head of Biomedicine and Cellular Toxicology

ICCRAM Biomedicine and Cellular Toxicology

- Human and environmental hazard assessment for novel (nano)materials and chemicals in line with the European Safe and Sustainable by Design (SSbD) Strategy.
- Understanding mechanisms of toxicity in human models.
- Biomedical studies related to human health.

BIOMEDICINE

and cellular toxicology

THE THREE MAIN OBJECTIVES

01

"Toxicology services": Advanced *In-vitro* assays for human and ecotoxicity assessment.

02

Understanding of toxicity mechanisms using cell and molecular biology approaches.

03

Application of **cell and molecular biology techniques** for **biomedical studies** related to human health.

CELL & MOLECULAR BIOLOGY TECHNIQUES:

CURRENTLY AVAILABLE

C

02

- 2D, 3D and 3DD cell culture models
- Xenobiotic exposure assessments: dose-response
- Viability assays, Oxidative stress, Membrane integrity, Metabolic activity
- Transcriptomic analyses (qPCR, RNAseq)
- Immunofluorescence
- Flow cytometry & cell sorting
- Skin irritation test OECD 439 for chemicals & Medical Devices
- Acute toxicity test OECD 249 ecotoxicity

POTENTIAL FUTURE IMPLEMENTATIONS

03

- Gene delivery assays using both viral (transduction) and non-viral (transfections) vectors in cellular models
- Viral Gene Delivery Systems: Lentivirus production
- Cell Line Engineering: CRISPR/Cas9 genome engineering, shRNA-mediated gene knockdown
- Primary Human-Derived Cell culture, 2D and 3D Co-culture Models
- Tumour microenvironment, migration, invasion and metastasis
- Analytical Techniques: ELISAs, Immunohistochemistry, Western Blotting.

BIOMEDICINE

and cellular toxicology

— Models/exposure routes

Oral

Respiratory

Dermal

VF

Pulmonary toxicity

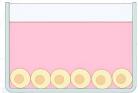
Dermal toxicity

Neurotoxicity

Environmental Model

Rainbow trout cell line

Techniques


Tissues

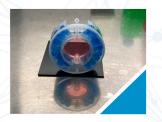
In Vitro EpiDerm Skin Irritation Test (EPI-200-SIT)

2D

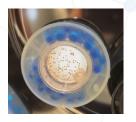
Applicated example of 2D technique

3D Static

Applicated example of 3D static



3D Dynamic


Applicated examples of 3D dynamic

3D Dynamic applications

TOXICOLOGY AND BIOMEDICINE

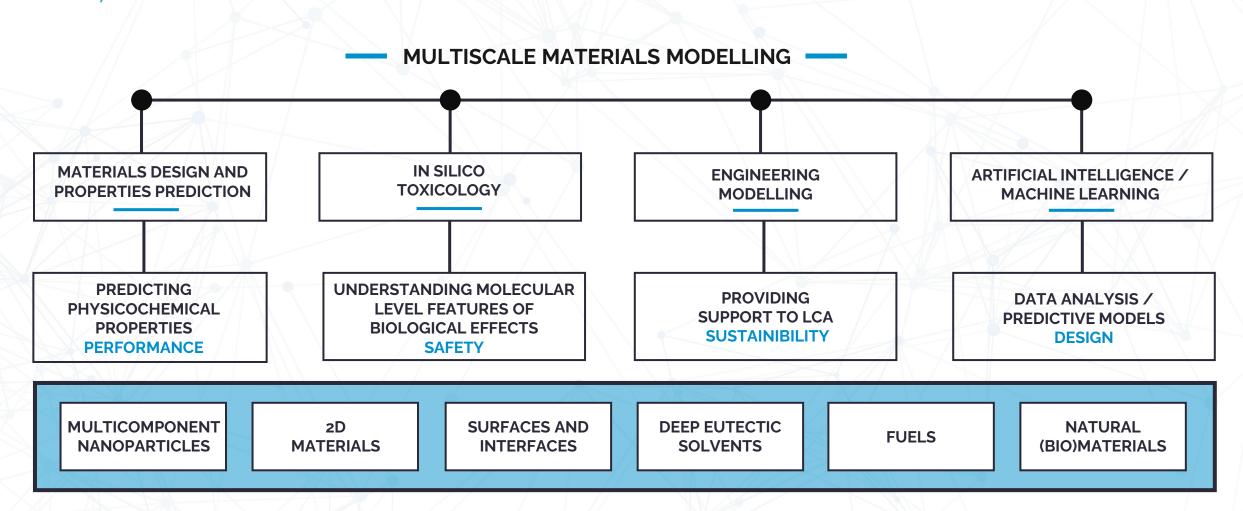
Projects and Team

National and European Projects

SSbD, Human &

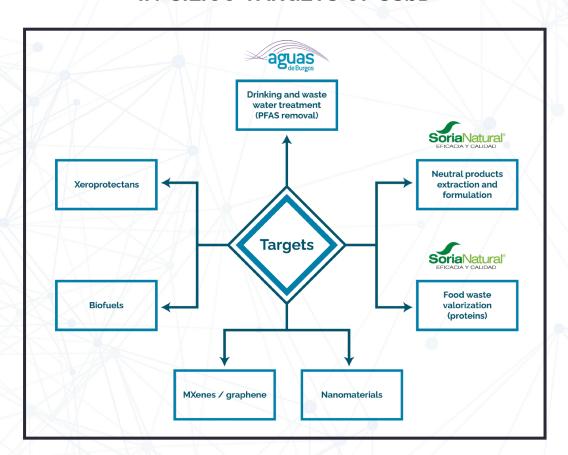
BIOMEDICINE & TOXICOLOGY TEAM

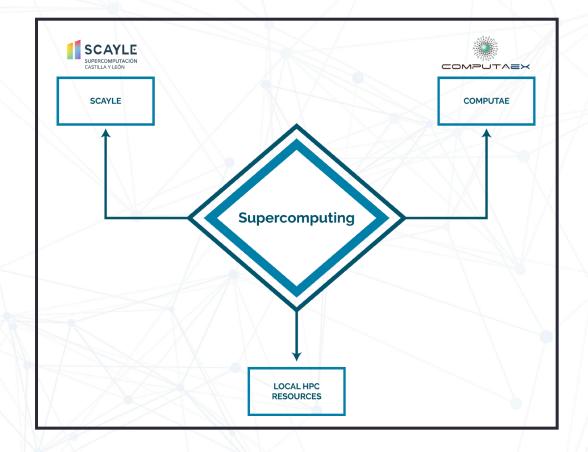
Back to Index


Santiago Aparicio. Head of AdF group

ICCRAM

Design and Materials Modelling Research Group


Safe, Sustainable and Functional Materials

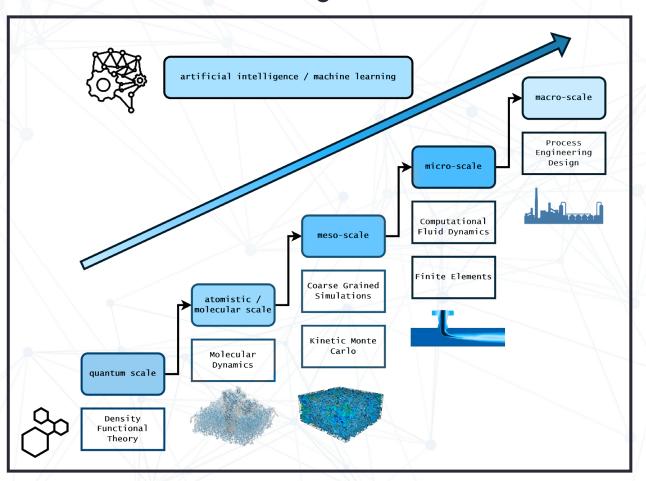


Safe, Sustainable and Functional Materials

IN-SILICO TARGETS OF SSbD

SUPERCOMPUTING OF SSbD ——

Back to Index



Methods and Tools

SCAYLE DPC Corridor

--- Methodologies & Tools ---

Projects and Team

National and European Projects

PFAS replacement

Proteins extraction from waste

Graphene - Mxenes composites

Photocatalysts for solar fuels from CO2

In silico methods for SSbD

Xeroprotectants for biopreservation

In Silico methods

for SSbD

BIOREM

MODELLING TEAM

Digital Twins for biofuels production

Edgar Ventosa Arbaizar Head of PROELECTRO group

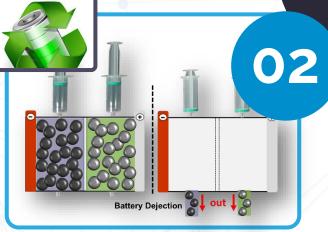
ICCRAM

Electrochemical Processes and Energy Storage Research Group (PROELECTRO)

ELECTROCHEMICAL PROCESSES

Research Lines

Redox Flow Batteries



Operando

& In-situ techniques for batteries

Recycling Strategies & Injectable battery

Battery Sustainability

Redox flow battery

Shape-conformable battery & Battery-Electrolycer

Innovative

Battery Concepts

ELECTROCHEMICAL PROCESSES

Capabilities

CAPABILITIES OF PROELECTRO

CAPABILITY 1

Flow and non-flow battery assembling (e.g. Ar-filled glovebox).

CAPABILITY 3

Advanced electrochemical and spectroelectrochemical techniques.

CAPABILITY 2

Electrochemical characterization (e.g. EIS, cyclers).

CAPABILITY 4

Fast prototyping (e.g. 3-D printing): TRL 4

ELECTROCHEMICAL PROCESSES

Projects and Team

— National and European Projects

High-Energy Redox Flow Batteries

Advanced Materials for Energy Storage

MAT2TEC

Battery Recycling

New Shape-conformable Battery Concept

INGELBAT

Sustainable Redox Flow Batteries

OMBAT

Long-duration Redox Flow Batteries

MEDIABATT

Operando techniques for battery characterization

BU036P23

Nanomaterials-enhanced Redox Flow Batteries

QUANTUMBAT

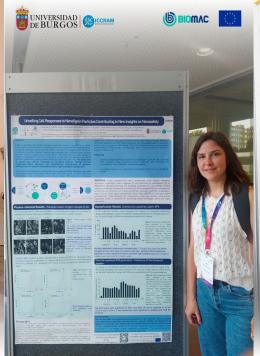
PROELECTRO TEAM

ICCRAM Communication and dissemination

ICCRAM — UNIVERSIDAD DE BURGOS

LEADING DISSEMINATION AND COMMUNICATION WORK PACKAGES WITHIN EUROPEAN RESEARCH PROJECTS

+ A GREAT TEAM CARRIES OUT DIFFERENT ACTIVITIES TO BRING SCIENCE CLOSER TO SOCIETY



MAIN RESEARCHERS

Rocío Barros - rbarros@ubu.es Sonia Martel - smartel@ubu.es Carlos Rumbo - crumbo@ubu.es Laura Gómez - lgcuadrado@ubu.es Edgar Ventosa - eventosa@ubu.es Santiago Aparicio - sapar@ubu.es

LOCATION

Plaza Misael Buñuelos s/n, 09001, Burgos (Spain)

FOLLOW US ON SOCIAL MEDIA!

CONNECT US ON LINKEDIN! ICCRAM - University of Burgos

